Specification and Satisfaction of SLAs in Service Oriented

Architectures

Stuart Anderson'™

Antonio Grau'™

Conrad Hughes'™

February 15, 2005

1 Introduction

This paper presents two essential aspects related
to the specification of Quality of Service (QoS) in
service oriented architectures. Firstly an overview
is presented of the concepts and requirements that
a language for the specification of QoS agreements
(Service Level Agreements, or SLAs) must address,
and how the WSLA language supports them. We
concentrate on the components that an SLA lan-
guage should have, and do not address other issues
of the SLA life cycle such as negotiation, provision-
ing and monitoring. Secondly a work-in-progress is
described which can provide statistical estimates of
multiple dimensions of behaviour of composite ser-
vices, a facility which will be essential when choos-
ing services and adjusting workflows in order to sat-
isfy SLA requirements.

Section 2 presents SLA language requirements,
section 3 gives a brief introduction to WSLA and
shows its use in the specification of tradeoffs be-
tween the QoS parameters (as well as evaluating
WSLA against requirements), and section 4 de-
scribes the work on predicting behaviour of aggre-
gate workflows.

2 Requirements for an SLA
language

A service level agreement is an agreement between
the provider of a service and their customer that
defines the set of Quality of Service (QoS) guar-
antees and the obligations of the parties. An SLA

tSchool of Informatics, University of Edinburgh

*These authors acknowledge the support of EPSRC
award no. GR/S04642/01, Dependable, Service-centric Grid
Computing

ensures that both parties understand the service to
be provided and that it will conform to certain QoS
requirements. An SLA language usually defines the
following aspects of the SLA: the purpose; the va-
lidity period; the parties involved and their respec-
tive roles; the scope (i.e. the service operations
covered in the agreement); the set of service level
indicators (or QoS parameters), and their associ-
ated metrics, over which the QoS levels can be mea-
sured; the set of Service Level Objectives (SLOs) or
guarantees to be fulfilled; and the penalties and ac-
tions to be undertaken when these guarantees are
not satisfied. QoS parameters refer to observable
properties relating to nonfunctional aspects of the
service, e.g. availability, performance and reliabil-
ity. SLOs are constraints defined over the values
of those parameters that may be dependent on a
precondition.

An SLA language should fulfil the following de-
sirable properties and requirements:

Precision

An SLA must be specified in a precise and unam-
biguous way. This is essential in order that the
service provider and customer clearly understand
the offered quality of service, and so that no mis-
understandings arise later. Precision is also essen-
tial in order to help automate the SLA manage-
ment process, such as the automatic negotiation,
provisioning and monitoring of the SLA. Precision
must cover all the elements of an SLA specifica-
tion, including the definitions of the QoS parame-
ters, their metrics and the agreed SLOs. For ex-
ample, dependability concepts such as availability
and reliability and how these are measured should
be well understood by both parties. Issues such
as when the SLA should be checked for compli-

ance, over which sample of data and from where
the measurements should be taken must be unam-
biguously specified. Offering an average availabil-
ity of 99.9% does not entirely assure that the ser-
vice will be available on 99.9% of client accesses,
as availability may depend on the time of access.
Also, response time measurements made by the ser-
vice client are likely to be entirely different to those
taken on the network or by the service provider. An
average response time may be different depending
on the averaging window, for example, five min-
utes or one hour. The correct definition of QoS
parameters corresponds to the establishment of an
ontology between a service provider and the client
[4]. This ontology can be a definition of terms and
the semantics of the relationships between them.
The definitions could then be available at refer-
enced URIs on the “Semantic Web” as suggested
by the OWL-S approach [7], so that the provider
and the client have a means of sharing definitions
of the terms and concepts used in the SLA.

Flexibility

Web services can be extremely diverse. The QoS
parameters and SLOs referenced in an SLA are of-
ten specific to the particular web service under ne-
gotiation. For example, the SLA of a service pro-
viding streaming multimedia would contain QoS
parameters such as bandwidth limits and quality of
the streaming media, while the SLA of a e-banking
service would have guarantees on the security of
the transmitted information. The nature of inter-
actions between the service customer and provider
is likely to be diverse too — for instance, single
request-reply interactions and interactions that can
last for several hours. This diversity demands SLA
languages that can be extended to fit the needs
of the specific web service domain. Extensibility
should cover the definition of new QoS parameters
and new metrics as well as other language terms
necessary for the definition of SLOs specific to the
web service. XML-based languages are good can-
didates, not only because of their ease of extension
but also because they are extensively used in other
web service-related specifications such as WSDL
and SOAP [3].

Definition of qualitative parameters

Existing SLA languages refer to observable QoS pa-
rameters that can be measured and therefore have
an associated metric. However, they do not re-
fer to qualitative unmeasurable parameters such as
the chosen security model or supported standards.
The reason for excluding these parameters is prob-
ably due to the fact that one of the main objectives
of formalising SLAs is the automation of the SLA
management. Including unmeasurable parameters
in the SLAs would break the homogeneity of how
the parameters are handled by some of the compo-
nents of the SLA management framework, such as
the provisioning of resources and the measuring and
monitoring of the parameters. As SLAs are usu-
ally not stand-alone documents but embedded in
legal contracts, a possible option for consideration
of qualitative parameters would be their direct in-
clusion in the contract, leaving intact the SLA doc-
ument. However, this would prevent the use of such
qualitative parameters in SLOs, for instance for the
specification of tradeoffs between measurable and
unmeasurable parameters. It remains an issue how
unmeasurable parameters can be expressed in an
SLA and how the client can be confident that the
service fulfils them.

Definition of relationships between
the QoS parameters

An SLA language should allow the specification
of guarantees that relate different QoS parameters
by providing a set of logical expression constructs.
This is essential in order to specify tradeoffs be-
tween the parameters. For instance, a client could
be interested in making tradeoffs between response
time and availability, or between size and quality
of the data. Another interesting possibility for re-
lating QoS parameters is to give them a weight or
level of importance, allowing customers to establish
their priorities. This could prove useful to the SLA
provisioning system if excess resources are available
after all SLOs are met.

Definition of effects

The SLA must specify the consequences of not
meeting an SLO. This includes the specification of
a list of actions to perform such as sending notifi-

cations to the parties as well as the penalties for
the provider. Penalties would incur a certain cost
for the provider and should also include the op-
tion of terminating the contract in the case that
the service levels are unacceptable. Alternatively,
meeting an SLO could also generate a reward for
the service provider. An SLA should also facilitate
notification of the parties when the service level is
near to violating an SLO, so the provider has the
opportunity to assign additional resources to guar-
antee the SLO, and the client has advance warning
of possible breaches.

Definition of endogenous and exoge-
nous parameters

The level of service offered for some QoS parame-
ters can be affected by other parameters that are
not within the control of the service provider. This
is the case, for example, for web services that are
accessed through the public Internet, where the ser-
vice provider has no control over the network prop-
erties that are provided by the client’s ISP. An SLA
must specify under which conditions or values of
the exogenous parameters, the SLOs are to be guar-
anteed by the service provider. The SLA can define
different guarantee levels as a function of the val-
ues of the exogenous parameters. This affords the
service provider protection from liability in case of
low QoS levels resulting from circumstances out-
side their control. Although the client is only in-
terested in the end-to-end QoS, it is important for
the provider to identify exogenous components in
the parameters and the effect that these compo-
nents have on the end-to-end values so guarantees
can be specified accordingly, e.g. end-to-end avail-
ability as a function of network availability.

Exceptions

An SLA must not only specify the level objectives
in normal conditions but also in exceptional cir-
cumstances. Exceptions can be provoked by many
diverse events and can have effects of diverse mag-
nitude on the terms of the SLA. For example, a
server attack may produce a denial of service that
entails the suspension of all the SLOs established
in the SLA, while maintenance operations at the
provider side may just affect the levels of some pa-
rameters. Exceptions can be caused by the service

provider (e.g. a server-side hardware failure), the
client, an external provider (e.g. the client ISP), or
complete externalities such as natural catastrophes
or war. Providers must specify the actions to take
when an exception for which they are responsible
happens (e.g. recovery mechanisms and notifica-
tions in case of failures), and also clearly identify
the exceptions that are not under their control, so
that no liability problems arise. Exceptions can be
classified as follows:

Type Examples

Hardware failure,

software bugs/flaws,
Failures telecommunication failure,

measurement or
monitoring failure
Hardware upgrades,
software upgrades,
backups

Low network availability,
high network error rate,

Service maintenance

Network properties
(not responsibility
of the provider)

Client negligence/

wilful misconduct,
network/Internet security
breaches (floods, hacks
and attacks),

Acts of God (fire,
earthquakes, ...) and
circumstances beyond
reasonable control (war,
terrorism, strike, ...)

Denial of service

Table 1: Exceptions

Composition

A service provider can make use of other providers
to supply some part of the service functionality.
In this case, the values of the SLA agreed by the
provider and the end customer will depend on the
values of the SLAs agreed by the provider and their
suppliers. Composite web services require therefore
a precise understanding of how the individual QoS
properties of a component contribute to the overall
QoS properties of the composite. This will depend
on the structure of the composition and the nature
of the QoS parameters. A precise QoS ontology
must therefore encompass the definition of how QoS

parameters behave in composition.

Definition of parties

The SLA must include information about the par-
ties involved in SLA management and their respon-
sibilities. Apart from the signatory parties, i.e. the
service provider and the service client, the SLA
should contain information about third parties, i.e.
parties supporting part of the management func-
tionality, such as measurement and monitoring.

SLA management

The components of an SLA must be defined in the
context of an SLA management framework. SLA
management includes tasks such as the negotiation,
creation, provisioning, monitoring and compliance
checking of the SLAs. The creation of the SLA
may be as simple as the customer selecting one of
the pre-specified SLAs offered by the provider, or
by customisation via a negotiation process. Differ-
ent service clients may have different requirements
and preferences regarding QoS levels, so the service
provider must define several offers with different
service levels. Pre-specified, fixed and negotiable
information about the QoS values offered by the
provider can be captured by SLA templates. The
structure of an SLA template may be the same as
that of an SLA but partially completed and con-
taining an additional section where constraints on
the values of the unfilled fields are defined. The
constraints must be followed by the customer when
negotiating the SLA.

3 SLA specification in WSLA

WSLA (Web Service Level Agreement) is a formal
language to define service level agreements that has
been developed by IBM [2, 5, 6]. It is based on
XML, and an XML schema has been defined for
its syntax. The language is extensible and allows
derivation of new domain-specific elements from ex-
isting language elements. This can easily be done
by making use of the ability to create derived types
using XML schemas. A WSLA specification is
structured in three main sections: the parties, the
service description and the obligations.

Parties specification

This section describes the parties involved in the
management of the web service. A party can be
a signatory party or a supporting party. Signa-
tory parties are either the service provider or the
service customer. The information for a party in-
cludes the name, contact, and the definition of the
interfaces of actions that it offers. The interface
definitions are specified in WSDL and describe op-
erations that a party can perform when invoked by
the occurrence of an event, e.g. a notification when
a guarantee is violated. The information for a sup-
porting party includes additionally the sponsor of
the party, either the provider or the customer, and
the supporting réle that it assumes, for example,
measurement service or condition evaluation ser-
vice.

Service definition

A service definition specifies the information
needed about the service to define the agreed ser-
vice level guarantees, i.e. the operations offered by
the service provider, the QoS parameters to be con-
sidered for each of these operations and the metrics
used for measuring these parameters. In WSLA,
QoS parameters are called SLA parameters and
must be measurable. Fach SLA parameter has a
name, a type and a unit. In addition, a param-
eter refers to one metric that describes how the
value of the parameter is measured or computed.
A metric can be either a resource metric or a met-
ric composed from other metrics. In the former
case, this is specified by a measurement directive;
in the latter case, this is specified by a function.
Examples of resource metrics are system uptime,
service outage period and number of service invo-
cations. Examples of composite metrics are maxi-
mum response time and average availability of the
service. A measurement directive describes how the
values are retrieved from the resources. Examples
of measurement directives are the URI of a com-
puter program, a command for invoking scripts and
database queries. A function represents a measure-
ment formula that specifies how the composite met-
ric is computed. Examples of functions are mean,
median, sum, minimum, maximum and time se-
ries constructors. For every function a schedule is
described. The schedule specifies the time inter-

vals during which the function is executed to com-
pute the metric. The time intervals are defined by
means of the start time, duration and frequency.
Moreover, SLA parameters can include information
about the party that provides the values and the
parties that receive them, either by active update
(push) or by providing access to the parties to re-
trieve them (pull).

Each operation also contains a reference to the
service that contains the operation definition to
which the WSLA operation refers. This reference
depends on the way in which the service is de-
scribed. In the context of web services, this is de-
scribed in a WSDL specification. The reference to
a WSDL-defined service includes the name of the
WSDL file, the kind of binding, i.e. the transport
encoding for the SOAP messages, and the opera-
tion name as specified in the WSDL file.

Obligations

This section defines the guarantees and constraints
that are imposed on the SLA parameters. Two
kinds of obligation arise: Service Level Objectives
(SLOs) and action guarantees.

SLOs are restrictions on the values of the SLA
parameters in a given period of time. An SLO
specifies the party that is responsible for deliver-
ing what is imposed in this guarantee, a validity
period defining when the restriction is applicable
and a logical expression defining the assertion to
be tested. In addition, an SLO may contain infor-
mation about when the assertion should be evalu-
ated. This can be done by defining either an eval-
uation event expressing when the assertion should
be evaluated (for example, every time a new value
for an SLA parameter included in the assertion is
available), or a schedule according to which the as-
sertion is evaluated.

An action guarantee specifies the actions that
must be performed by the parties in the case that
a given precondition is met. A typical predicate in
a precondition is the violation predicate that ex-
presses whether an SLO has been violated. The
definition of an action guarantee contains the name
of the party in charge of this guarantee, a logical
expression defining the precondition, an evaluation
event or schedule describing when the precondition
should be evaluated, and the actions to be invoked
at particular parties in the case that the precondi-

tion holds. The interface of the actions is defined
in the parties’ specification section of the WSLA
document and examples of actions are the notifi-
cation of events, problem reports and payment of
penalties and premiums. An action guarantee may
also include an execution modality that expresses
the frequency with which the action must be exe-
cuted depending on the value of the precondition,
for instance always, on entering a condition, and on
entering and leaving a condition.

Tradeoffs specification in WSLA

A main feature of WSLA is that it allows the use
of logical expressions in the specification of the
SLOs and action guarantees. WSLA provides logi-
cal expressions that follow first order logic includ-
ing logic operators and predicates but not quan-
tifiers. The logic operators are And, Or, Not and
Implies. Tradeoffs between QoS parameters (i.e.
dependencies between the values of the parame-
ters) can be specified using the Implies opera-
tor. Predicates are functions that return true or
false. The predicates needed may vary depend-
ing on the SLA parameters and metrics defined for
a particular domain. WSLA allows the definition
of new predicates to fit the needs of the specific
application domain by defining the predicate type
as an abstract type that can be extended in the
XML schema. WSLA also provides a set of built-
in predicates: Violation, Greater, Less, Equal,
GreaterEqual, LessEqual, True and False. As
an example to illustrate the concepts, suppose we
have a web service providing text-to-speech audio
streaming. Customers send requests in the form
of texts to be synthesised. The provider generates
the corresponding audio signal and transmits it to
the customers over the Internet in a compressed
stream format. A key requirement in the quality of
the service is the continuous playback of the audio
stream by the client, i.e. elimination of the gaps
or silences which occur (usually as a result of net-
work congestion) when the rate of audio delivery
drops below real time for long enough to exhaust
the client’s buffers. Assuming an idealistic case in
which the provider promises that no gaps in trans-
mission will occur, the SLO within the SLA doc-
ument that guarantees this requirement could be
specified as follows:

<0Obligations>
<ServiceLevelObjective name = "GapOccurrence">
<0bliged>TTSProvider</0Obliged>
<Validity>
<Start>2005-01-01T09:00:00-00:00</Start>
<End>2005-01-31T09:00:00-00:00</End>
</Validity>
<Expression>
<Predicate xsi:type = "Equal">
<SLAParameter>BitsDelay</SLAParameter>
<Value>0</Value>
</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
</ServicelLevelObjective>

</0Obligations>

The complete WSLA specification can be found
in appendix A. This SLO specifies first the obliged
party in charge of assuring the level of service, and
then the validity period. Assuming we have an SLA
parameter, BitsDelay, which represents the differ-
ence of bits between the expected and the actual
bits received by the client, the SLO asserts that
this difference must be equal to zero, i.e. there is
no gap during the transmission.

A more realistic example is the assurance by
the provider of no gaps only after a percentage of
the audio has been transmitted. This helps the
provider to first negotiate and calculate the appro-
priate encoded content for the best audio quality
depending on the customer’s real connection band-
width. The SLO specifying this guarantee could be
defined as follows:

<ServiceLevelObjective name = "GapOccurrence">
<0bliged>TTSProvider</0Obliged>
<Validity>
<Start>2005-01-31T09:00:00-00:00</Start>
<End>2005-01-31T9:00:00-00:00</End>
</Validity>
<Expression>
<Implies>
<Expression>
<Predicate xsi:type="Greater">
<SLAParameter>StreamTransmittedPercentage
</SLAParameter>
<Value>10</Value> <!-- 10% -—>
</Predicate>
</Expression>
<Expression>
<Predicate xsi:type = "Equal">
<SLAParameter>BitsDelay</SLAParameter>
<Value>0</Value>
</Predicate>
</Expression>
</Implies>

</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
</ServiceLevelObjective>

Given an SLA parameter, StreamTransmitted-
Percentage, which represents the percentage of
the audio stream that has been transmitted to the
client, this SLO asserts that there are no gaps af-
ter 10% of the audio stream has been transmit-
ted. Note that as WSLA does not allow the use of
variables with values that can be computed nor re-
trieved from a resource, the percentage of the audio
stream has been defined as an SLA parameter.

WSLA allows the specifications of actions to be
executed in the parties when a guarantee or SLO is
violated. In our example, the following action guar-
antee specifies the execution of a notification to the
provider indicating that a gap in the transmission
has violated the SLO:

<ActionGuarantee name = "GapOcurrenceGuarantee">
<0bliged>AuditingCompany</0Obliged>
<Expression>
<Predicate xsi:type = "Violation">
<ServiceLevelObjective>GapOccurrence
</ServicelevelObjective>
</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
<QualifiedAction>
<Party>TTSProvider</Party>
<Action actionName = "notification"
xsi:type = "Notification">
<NotificationType>Violation</NotificationType>
<CausingGuarantee>GapOccurrenceGuarantee
</CausingGuarantee>
<SLAParameter>BitsDelay</SLAParameter>
</Action>
</QualifiedAction>
<ExecutionModality>Always</ExecutionModality>
</ActionGuarantee>

Analysis of WSLA against require-
ments

WSLA is one of the most suitable QoS languages
for achieving the requirements discussed in the pre-
vious section. In particular, the language presents
the following strengths:

e It allows the precise definition of the QoS pa-
rameters and their metrics, i.e. how and under
which schedule the measurement values are re-
trieved from the resources and how they can

be combined by functions to obtain meaning-
ful parameters such as the mean and the sum
of a series of values.

e It is flexible. The XML schema specification
allows the definition of new functions, predi-
cates and measurement directives by deriving
them from their abstract types. Furthermore,
the inherent extensibility of XML makes the
definition of new elements straightforward.

e The language provides logical expressions to
relate QoS parameters and specify tradeoffs
between them.

e [t allows the specification of actions to be per-
formed by the parties when some QoS values
or service level objectives are not met. How-
ever, it does not specify any penalty/reward
policy.

e [t gives full support to the definition of parties
and their responsibilities.

Nevertheless, some of the requirements are not
supported:

e It does not provide any specific construct for
the specification of penalties/rewards.

e It does not allow the specification of logical or
non-quantifiable parameters.

e It does not support the possibility of giving
priorities or weight to the QoS parameters.

e Although the logical expressions provided by
the language allow the specification of SLOs
in different conditions (normal, maintenance,
failure/exception cases, etc.), the language
does not support the explicit definition of these
conditions. Different cases could be specified
by the definition of variables, or predicates on
the values of the variables, that could be in-
stantiated during the service execution. How-
ever, WSLA only allows the declaration and
definition of QoS parameters.

These issues need to be addressed in order to ob-
tain more complete SLA specifications. Many of
the language concepts are being currently used and
extended to cover grid services in the context of
the WS-Agreement standard from the Global Grid
Forum, where the WSLA authors are active mem-
bers [1].

4 Behaviour of composite ser-
vices

The DIGS project seeks to automate as much as
possible the composition of services in pursuit of
QoS requirements through choice of appropriate
components (diversity) and modification of work-
flow (structure). This can only be done if the ef-
fect of differing service choices and workflow mod-
ifications can be understood. Consequently we are
developing a tool which predicts the aggregate be-
haviour of a composition in terms of its workflow
structure and the known behaviour of its individual
services. Once such predictions are possible, candi-
date compositions can be evaluated against client
SLA demands and duly accepted or disregarded.
Our solution breaks the problem into the following
four elements:

Properties

These simply correspond to the QoS parameters in
terms of which SLOs are written — things like time
to complete, availability, accuracy, peak bandwidth
usage, perhaps even cost.

Workflow

While so sophisticated a representation of compo-
sition structure as BPEL or a scripting language
may not be necessary, at least the basics of par-
allel, conditional and serial operation need to be
modelled. Parallel operations range from simple
variations like waiting for the first or all responses
through to more complicated ones such as voting or
waiting for a certain number of responses to satisfy
a condition (such as succeeding rather than failing).

Behaviours

Each property will respond to different workflow
operations in different ways, for example time to
complete is additive under serial composition, max-
imising under all-of parallelism (i.e. the time to
complete of an all-of parallel composition will be
the maximum of its components’ times), minimis-
ing under one-of parallelism; network bandwidth
is maximising under serial composition and addi-
tive for all forms of parallelism; probability of suc-
cess is multiplicative in series and “complement-

multiplicative” 1 —JT,(1 — p°°®**) in parallel; etc.
Considered in this light, a “property” becomes a
mapping from workflow operations to (numerical

or logical) operations on values.

Values

Workflow-induced behaviours of properties must be
executed on actual values if useful predictions are
to be made; the choice of underlying representa-
tion for these values will be critical, as (for exam-
ple) it will be very difficult to say anything about
the slowest 10% of a class of operation if all that’s
known about them is their average performance.
Possible representations for numeric quantities in-
clude expected value; minimum-maximum range;
mean and variance of best normally distributed ap-
proximation; probability density function; Markov
model of states; etc. Even within an individual
problem it will almost certainly make sense to use
different value representations for different proper-
ties. At the moment the main value representation
used is an approximation of the variable’s statisti-
cal distribution using a variable number of uniform
segments. This allows for moderately accurate rep-
resentations of a number of situations, including
delta functions, bimodal variables, etc.

Processes

A process is a bundle of properties representing the
known behaviour of an actual workflow element -
usually a service call. These are the objects with
which aggregation computations are made. It is
necessary to process all properties at once in bun-
dles because, once elements such as conditional op-
erations and parallel-first-response are admitted to
the workflow, individual properties start to affect
the probabilities with which other processes are ex-
ecuted, hence affecting all properties for dependent
elements of the workflow.

Examples

In reference to the text-to-speech service, it might
be reasonable to expect the difference between the
received and expected quantity of data to be nor-
mally distributed. The likelihood of a gap in au-
dio manifesting on the recipient’s machine will then
be determined by the size of the recipient’s buffer:

if the received-versus-expected difference exceeds
buffer capacity then the buffer will be empty and
a gap will occur — the probability of this event
can be exactly determined once the difference’s dis-
tribution (normal or otherwise) is known. If two
sufficiently similar text-to-speech sources can be
sourced then the likelihood of both buffers empty-
ing simultaneously will be the product of the each
individual service’s gap likelihoods. Obviously this
use of correlated parallel data sources will be signifi-
cantly more reliable than a single source. However,
it clearly also uses twice as much network band-
width, which in a bandwidth-constrained situation
could cause the very situation it seeks to mitigate.

Similarly, as reported in last year’s DIRC confer-
ence, making queries simultaneously against several
diversely implemented databases can substantially
improve response times — you can forget about the
other queries as soon as you have any result that’s
good enough. This has been demonstrated in prac-
tice, but also follows logically from the mathemati-
cal fact that the minimum of two random variables
will always have a lower mean than either variable
individually (as long as their distributions overlap
— if one variable is always lower than the other this
strategy cannot have any useful effect). The caveat
here is that in a commercial situation this improved
performance will come at the — likely financial —
cost of always making two queries instead of one.

A further example: simply waiting for a small
period for an answer from one service then (ab-
sent said answer) making the same request of an-
other service will decrease the rate of failures (both
services must fail in order to break this strategy),
probably also slightly improve response times (the
balance here will depend on the failure rates), and
— a tradeoff again — slightly increase costs. Call-
ing the more expensive service first will have a
higher average cost than starting with the less ex-
pensive service, but it might be expected that this
more expensive service will also offer a better re-
sponse time: another choice for the user to make.

As can be seen in all of the above examples,
there exist situations where using multiple services
in place of one can improve certain properties of the
system, usually at a tradeoff against other proper-
ties — a tradeoff heavily influenced by the manner
in which the services are combined. The tool we are
developing here will greatly facilitate the analysis
of such situations.

Status

The aggregate prediction tool is only now ap-
proaching useful functionality, as a result of which
no analysis has yet been done of how it com-
pares with (for example) simulation, or whether the
choice of distribution function as underlying value
gives significantly better results than the alterna-
tives in practical situations. This analysis will be
undertaken over the coming months.

5 Conclusion

This paper has presented the requirements for a
precise SLA specification language and how the
WSLA language meets them. Although the lan-
guage supports many of the requirements, it still
needs to be extended in order to support the speci-
fication of richer service level objectives, such as the
definition of logical parameters and exceptions. We
expect that combining SLAs with the ability to pre-
dict behaviour of composite workflows should offer
substantial gains in efficiency of resource usage as
well as allowing service providers and consumers to
start thinking about their compositions at a much
higher level than before.

References

[1] A. Andrieux et al. Web Services Agreement
Specification (WS-Agreement). Draft. Global
Grid Forum, August 2004.

[2] A.Dan et al. Web Services on Demand: WSLA-
driven Automated Management. IBM Systems
Journal, 43(1):136-158, 2004.

[3] G. Dobson. Quality of Service in
Service-Oriented Architectures, 2004.
http://digs.sourceforge.net /papers/qos.html.

[4] G. Dobson and R. Lock. Developing an Ontol-
ogy for QoS, 2005.

[5] A. Keller and H. Ludwig. The WSLA frame-
work: Specifying and monitoring service level
agreements for web services. IBM Research Re-
port, May 2002.

[6) H. Ludwig, A. Keller, A. Dan, R. P. King,
and R. Franck. Web Service Level Agreement

(WSLA) Language Specification, Version 1.0.
Technical report, IBM Corporation, January
2003.

[7] D. Martin et al. Bringing Semantics to Web Ser-
vices: The OWL-S Approach. In SWSWPCO04,
2004.

A Example SLA: text-to-

speech

<?xml version = "1.0" encoding = "UTF-8"7>

<!-- TTS sample -->

<SLA xmlns = "http://www.ibm.com/wsla"

xmlns:xsi = http://www.w3.org/2001/XMLSchema-instance
xsi:schemalocation = "file:///C:/WSLA093.xsd"

name = "TTSSample">

<!-- Definition of the Involved Parties, the signatory
parties as well as the supporting ones -->

<Parties>

<ServiceProvider name =
<Contact>
<Street>NeSC</Street> <City>Edinburgh, UK</City>
</Contact>
<Action xsi:type = "WSDLSOAPOperationDescriptionType"
name = "notification" partyName = "TTSProvider">
<WSDLFile>Notification.wsdl</WSDLFile>
<SO0APBindingName>SO0APNotificationBinding

</S0APBindingName>

<SOAPOperationName>Notify</SOAPOperationName>
</Action>

</ServiceProvider>

"TTSProvider">

<ServiceConsumer name = "TTSCustomer">

<Contact>
<Street>JCMB, King’s Buildings</Street>
<City>Edinburgh, UK</City>

</Contact>

<Action xsi:type = "WSDLSOAPOperationDescriptionType"
name = "notification" partyName = "TTSCustomer">
<WSDLFile>Notification.wsdl</WSDLFile>
<SO0APBindingName>SO0APNotificationBinding

</S0APBindingName>

<SO0APOperationName>Notify</SOAPOperationName>
</Action>

</ServiceConsumer>

<SupportingParty name = "AuditingCompany"
role = "MeasurementService">

<Contact>

<Street>BP 1</Street>

<City>Edinburgh, UK</City>

</Contact>
<Sponsor>TTSProvider</Sponsor>
</SupportingParty>

</Parties>

<!-- The definition of the service in terms of the
service parameters and their measurement. -->
<ServiceDefinition name = "TTSService">

<Schedule name="MainSchedule">
<Period>
<Start>2005-01-01T09:00</Start>
<End>2005-01-31T09:00</End>
</Period>
<Interval>
<Seconds>5</Seconds>
</Interval>
</Schedule>

<Operation name = "GetAudioStream"
xsi:type = "WSDLSOAPOperationDescriptionType">

<SLAParameter name = "BitsDelay"
type = "long" unit = "kbits">
<Metric>BitsDelayMetric</Metric>
</SLAParameter>

<Metric name = "BitsDelayMetric"

type = "long" unit = "kbits">

<Source>AuditingCompany</Source>

<Function xsi:type="wsla:Minus"
resultType = "long" unit = "kbits">
<Operand>
<Schedule>MainSchedule</Schedule>
<Metric>IdealBitsReceived</Metric>
</Operand>
<Operand>
<Schedule>MainSchedule</Schedule>
<Metric>BitsReceived</Metric>
</Operand>

</Function>

</Metric>

<Metric name = "BitsReceived"

type = "long" unit = "kbits">

<Source>AuditingCompany</Source>

<MeasurementDirective xsi:type =
"wsla:Counter" resultType = "long">
<MeasurementURI>
http://nesc.ed.ac.uk/TTS/ipKbitsIn
</MeasurementURI>

</MeasurementDirective>

</Metric>

<Metric name = "IdealBitsReceived"
type = "long" unit = "kbits">
<Source>AuditingCompany</Source>

<MeasurementDirective xsi:type = "wsla:Counter"
resultType = "long">

<MeasurementURI>
http://nesc.ed.ac.uk/TTS/IdealKbitsIn
</MeasurementURI>

</MeasurementDirective>
</Metric>

<WSDLFile>TTSService.wsd1</WSDLFile>

<S0APBindingName>
SOAPNotificationBinding

</S0APBindingName>

<SOAPOperationName>getAudioStream</SO0APOperationName>

</Operation>
</ServiceDefinition>

<!-- The TTSProvider assures that there
are no gaps during the transmission -->

<0Obligations>

<ServiceLevelObjective name = "GapOccurrence">
<0bliged>TTSProvider</0Obliged>
<Validity>
<Start>2005-01-01T09:00:00-00:00</Start>
<End>2005-01-31T09:00:00-00:00</End>
</Validity>
<Expression>
<Predicate xsi:type = "Equal">
<SLAParameter>BitsDelay</SLAParameter>
<Value>0</Value>
</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
</ServiceLevelObjective>

<ActionGuarantee name = "GapOcurrenceGuarantee'">
<0Obliged>AuditingCompany</0Obliged>
<Expression>
<Predicate xsi:type = "Violation">
<ServiceLevelObjective>
GapOccurrence
</ServiceLevelObjective>
</Predicate>
</Expression>

<EvaluationEvent>NewValue</EvaluationEvent>

<QualifiedAction>

<Party>TTSProvider</Party>

<Action actionName = "notification"
xsi:type = "Notification">
<NotificationType>Violation</NotificationType>
<CausingGuarantee>GapOccurrenceGuarantee
</CausingGuarantee>
<SLAParameter>BitsDelay</SLAParameter>

</Action>

</QualifiedAction>

<QualifiedAction>
<Party>TTSCustomer</Party>

<Action actionName = "notification"
xsi:type = "Notification">

<NotificationType>Violation</NotificationType>
<CausingGuarantee>GapOccurrenceGuarantee
</CausingGuarantee>
<SLAParameter>BitsDelay</SLAParameter>
</Action>
</QualifiedAction>
<ExecutionModality>Always</ExecutionModality>
</ActionGuarantee>
</0Obligations>
</SLA>

