
A Container-Based Approach to Fault Tolerance in Service-Oriented
Architectures

Glen Dobson Stephen Hall Ian Sommerville
Computing Department Computing Department Computing Department

Lancaster University Lancaster University Lancaster University
Lancaster, LA1 4YR, UK Lancaster, LA1 4YR, UK Lancaster, LA1 4YR, UK
g.dobson@lancs.ac.uk s.hall@comp.lancs.ac.uk is@comp.lancs.ac.uk

Abstract

This paper introduces an innovative approach to improv-
ing service availability and reliability. Central to the ap-
proach taken are what we call fault tolerant service con-
tainers. These ‘contain’ externally provided services and in
doing so add fault tolerance to them. This is achieved by
allowing the container to be configured with a policy which
specifies what kind of fault tolerance mechanisms may be
applied to the services it contains. The container proxies
calls to its services, passing them on to replicas in a pattern
determined by the specified policy. A tool and SDK simplify
the creation and deployment of the container and its policy.
We conclude that, as it stands, this architecture provides a
consistent mechanism for achieving certain kinds of fault
tolerance. As demonstrated by the astronomical ephemeris
application discussed herein, this also requires minimal ef-
fort from the developer. Furthermore, the extensible nature
of this architecture means that its users can complement and
extend the set of fault tolerance mechanisms already imple-
mented.

1. Introduction

Service-Oriented Architectures (SOA) are in the early
stages of adoption in both e-business and e-science. The
service oriented paradigm differs from that used in earlier
technologies by offering interoperability and loose coupling
driven by open, ubiquitous standards such as XML. Broad
based adoption of services depends on the availability and
ease of use of supporting technologies.

A key area for such supporting technologies is in han-
dling the inherent unreliability of services. Services may
fail for many reasons including resource starvation, faults in
implementation and network instability. Service-based ap-
plications must therefore employ fault handling techniques

such as fault tolerance to cope with errors propagated by
their constituent services, and thereby ensure an end-to-end
Quality of Service (QoS). Supporting technologies should
aid developers in doing this, and provide a consistent mech-
anism to do so. SOA has no standards or technologies to
deal with this at the application level. Specifications such as
WS-Reliability and WS-ReliableMessaging deal with faults
at the transport level.

Fault tolerant computing accepts that faults are unavoid-
able and may lead to component failure. Well understood
mechanisms have therefore evolved that anticipate compo-
nent failures but prevent these from leading to system fail-
ure. These fault tolerance mechanisms rely heavily upon the
replication of components. By suppling components from
different sources, diversity is introduced. Formal analysis of
fault tolerant software systems has demonstrated that diver-
sity can contribute significantly to an improvement in the
reliability and availability of the overall system [9]. This
is because similar components will fail in similar circum-
stances. Diversity of components is therefore desirable to
avoid simultaneous failures. Until now, systems deploying
significant diversity have largely been limited to safety crit-
ical applications such as avionics where ensuring system
safety outweighs the increased financial costs.

One well known example of redundancy and diversity
in avionics is the Airbus 340 fly-by-wire system (see [11],
[12]). This employs quintuple redundancy, utilising three
primary computers and two secondary computers in paral-
lel. The processors used are all from different manufactur-
ers and the type of processor differs between primary and
secondary computers. The primary and secondary comput-
ers are supplied by different companies. Each computer
also has two separate hardware channels which are com-
pared for consistency. If inconsistency is detected then con-
trol switches to another computer. The software running
on each channel is developed by a different team using a
different language. The flight control software on the pri-



mary and secondary computers is also developed by sepa-
rate teams. As well as all of this there is also redundancy
and diversity at the mechanical level. All of this ensures a
small chance of catastrophic failure because diverse replicas
are less probable to fail simultaneously.

The service vision introduces the notion of plurality and
diversity, with service providers competing in an open mar-
ket. A fault tolerant system can take advantage of this com-
petition by engaging several services for one task. More-
over, with multiple providers offering different implemen-
tations of the same service, diversity will not come at a high
premium. For the first time it could be practical for non-
critical software to leverage multi-version programming.

We have developed an extensible architecture allowing
the application of fault tolerance mechanisms to a set of
services. This is achieved through a fault tolerant service
container (Figure 1). This container concept is analogous
to that of component containers as, for instance, used with
Enterprise Java Beans. Like these containers, the service
containers described here add non-functional properties to
the software component (or in our case the service). The
container is configured with an XML fault tolerance pol-
icy model which leverages existing work by allowing fault
tolerance mechanisms (e.g. retry, recovery blocks or redun-
dancy) to be applied to at the application level. Key to the
architecture are the notions of service plurality and diver-
sity.

Figure 1. Overview of Service Container

Earlier we made the statement:

broad based adoption of services depends on
the availability and ease of use of supporting
technologies.

We have therefore given due consideration to how a ser-
vice container can be developed and deployed. Our ap-
proach is three pronged; firstly host the system in a middle-

ware environment; have a software development kit (SDK)
to enable the development of models and procedures within
the context of the architecture. Finally, we present a tool
that allows the aggregation and deployment of these models
and procedures.

The following section sets the scene for our architecture
by considering the details of the problem it addresses and
the approach taken. Section 2 also introduces a scenario to
be used as a point of reference throughout the paper. In sec-
tion 3 we give a full review of the architecture. Section 4
discusses the practical aspects of utilising the architecture
and making it concrete. We evaluate the architecture in sec-
tion 5, and finally, in section 6, draw conclusions on this
work.

2. Overview of Approach

There have been a number of efforts to achieve fault
tolerance in service-centric systems. Many of these apply
techniques used in other distributed systems. A common
approach taken is hardware redundancy. This addresses the
problem of service providers who are seeking to increase
the availability of their own services. One of the advantages
of this technique is that it is likely to be already applied by
providers to increase the availability of their websites. In
general the approach taken does not involve diversity how-
ever, but relies upon hosting replica services on multiple
servers from the same manufacturer (often using the same
server software and operating system). This lack of diver-
sity means that failures are more likely to occur simulta-
neously in all replicas. A further problem with hardware
redundancy is that there are likely to be some service calls
which are never recovered because they occur in the time
between failure detection and rerouting to a backup server.
Software redundancy can avoid this problem.

In our architecture we achieve redundancy at the service
level and therefore at the software and/or hardware level.
That is, the host machines of our replicas may be differ-
ent and the service implementations themselves may also be
different. Secondly, because we are exploiting the nature of
service-centric systems, our approach can easily be applied
to third party services. It is therefore applicable beyond
organisational boundaries. Discovering replica services at
runtime through late binding is also possible. A final ad-
vantage is that in a service marketplace redundancy may
be achieved at relatively small financial cost (compared to
server replication within a single organisation for instance).

Some basic considerations of fault and failure handling
have already been made in the web service architecture.
Faults can be generated during service invocation and re-
turned in SOAP messages as SOAP Fault elements. These
are much the same as Java Exceptions. However such a
construct does little to aid in dealing with byzantine faults.



Fault tolerance therefore has a role to play not only in re-
sponding to SOAP Faults - but in plugging the gap and al-
lowing tolerance of byzantine faults. For instance a majority
voting mechanism should increase availability in the pres-
ence of byzantine faults. This means that a degree of secu-
rity can also be achieved since tampering can be detected by
voting provided it only affects a minority of replicas (thus
hosting replica services on diverse network routes is impor-
tant where possible).

Our architecture decouples fault detection from fault tol-
erance and therefore the classes of fault it can handle are
unbounded. In fact, this purely depends on whether ap-
propriate fault detectors have been written. Currently, de-
tection of unresponsiveness, network outages and explicitly
returned SOAP faults are the main mechanisms that we have
employed.

2.1. Ephemeris Voting Scenario

As an illustrative example of applying our architecture
we introduce the example of an Ephemeris voting system
that shall be used throughout this paper. An ephemeris is a
table giving the coordinates of a celestial body at a number
of specific times over a given period. Various online sys-
tems exist that will calculate Ephemerides (e.g. [2], [1]).
We wrapped some of these as web services. Not only may
these systems become unresponsive due to failure, they may
return corrupt or incorrect data. This is both due due to the
nature of the web and specific difficulties of calculating ac-
curate ephemerides. To improve the reliability of the results
returned by these services we simply perform a majority
vote on the results returned by a number of them.

The essential inputs required to produce an ephemeris
may include:

1. The name or designation of the body in question.

2. The start date, duration and interval to calculate the
ephemeris for.

3. Some indication of whether the ephemeris is to be geo-
centric, heliocentric or topocentric (and longitude, lat-
itude and altitude in the latter case)

4. Various inputs to affect the output quantities and for-
mat.

As an example, we concentrate on requesting a topocen-
tric ephemeris for a Uranian Satellite: Ariel (UI). We re-
quest the ephemeris to be over a seven day period start-
ing on January 1st 2005, 00:00, lasting 7 days, with a one
day interval. We use the observatory at London’s Regent’s
Park (observatory code 969) as the origin of the topocentric
co-ordinate system (0o09’16.6”W, 51o31’17.4”N, -4.02603

m). We request Ariel’s Right Ascension (RA) and Declina-
tion (DEC) and ignore any other output returned. For the
purpose of this paper it is not necessary to understand these
values. Asa brief explanation RA/DEC coordinates are to
the celestial sphere what longitude/latitude coordinates are
to the earth’s surface. RA is measured in units of hours,
minutes and seconds whilst DEC is measured in units of
degrees, minutes and seconds.

Different services return results formatted differently
and with different accuracy. Therefore voting must be done
only on the desired data and with some degree of tolerance
for variation.

3. Architecture

Our architecture is an application of fault tolerance poli-
cies to a set of services via a service container. The con-
tainer acts as a proxy to the actual services. Therefore, a
message en route to a deployed service will be intercepted
by the container, which adds a set of domain-independent
peripheral services such as fault tolerance. The actions of
the container are transparent to both the client and service
provider. Our service container is exclusively programmed
in Java. Containers achieve their relative transparency by
relying on something programming pioneer David Wheeler
noted in the 1950s (and quoted in relation to containers in
[5]):

Any problem we are likely to encounter can
be solved by introducing an extra level of indirec-
tion.

3.1. Anatomy of a Service Container

We apply a policy, in this case a fault tolerance policy, to
each message passing through the service container walls.
To action the policy we intercept the service call and pass
that message through a model representing that policy. The
policy model itself consists of an acyclic graph of proce-
dures. Essentially, we are providing nothing more than a
mechanism by which actions can be applied to service mes-
sages. A procedure implements the actions of the policy
model, for example in the case of a redundancy procedure,
it clones a service message and concurrently redirects the
clones down several connections. There are no limitations
on the functionality of the policy model or constituent pro-
cedures, this is entirely extensible. Procedures are linked
together with connections, these constitute the edges of the
graph. Each connection is accessed programmatically from
within a procedure but is deployed externally. Figure 2 ex-
pands upon Figure 1 by depicting a real instantiation of a
policy model that relates to the Ephemeris voting scenario.



Figure 2. Anatomy of Service Container

3.2. Motivation for a Service Container

Experience with an EJB application server provides the
motivation to create service-based containers. EJB compo-
nents are only accessed indirectly via proxy objects gen-
erated by the EJB container. These proxy objects pro-
vide a range of non-functional peripheral services such as
transaction management, security and load balancing. Non-
functional properties are part of the bean’s runtime deploy-
ment.

3.3. Service Container

Our service container (Figure 1), much like an EJB ap-
plication server, deploys proxy objects, in the form of trans-
parent services. These proxy services intercept messages en
route to real services. The interception step is achieved by
endpoint displacement; by which the endpoint of an actual
service is replaced by the endpoint of a proxy service. Of
course this introduces the requirement for the container to
have access to the endpoints of real services. Endpoints are
the addresses of services that are usually represented in the
form of uniform resource identifiers (URIs). Because ser-
vices are accessed by endpoints there are no requirements
for a naming/directory service such as LDAP. However, a
client must know the endpoint of the container based proxy
service.

Unlike EJB components, the ‘contained’ services do not
actually reside inside the container. This is also what dis-
tinguishes our service container from service containers as
used in the more generic web server context. In reality, any
of these services could be called directly without traversing
the container. Another divergence between an EJB and ser-
vice containers, is that restrictions are placed upon the com-

ponents themselves. Inside an EJB container the bean is re-
stricted, for example from using threads or being re-entrant;
though this is only an advisory measure (a bean containing
threads could be deployed). Our service container places no
specific requirements on services given that their nature is
outside our control.

3.4. Representing Policy Models and Procedures

In practice, the information essential to a policy model is
represented in eXtensible Markup Language (XML). This
XML model consists of three compulsory elements: a pol-
icy element plus one or more procedures and connections.
The ‘policy’ element is the outermost element and repre-
sents the whole policy model for this proxy service. A pol-
icy element consists of ‘procedure’ sub-elements that map
to procedure objects. Each procedure element indicates the
class and identity of a procedure object. A procedure object
is an instantiation of a Java class that implements a proce-
dure interface. There is a one-to-one mapping between each
procedure element in the policy model and a procedure sub-
class. Each procedure sub-class must expose an invokable
interface. In addition to the invokable interface, each pro-
cedure must have a constructor that takes the corresponding
XML element from the policy model as an argument. The
final compulsory element in the policy model is the ‘con-
nection’ element. This must be nested inside a procedure
element to represent a link to another procedure element.
This link indicates that, after being invoked, the ‘parent’
procedure will pass the message context to the procedure
indicated in its nested connection. Procedure elements rep-
resent the nodes of a graph whereas the connection elements
represent the edges.

In Figure 3 we return to the example introduced in Sec-
tion 2.1, and illustrate XML representing the policy model
for the Ephemeris voting system. The XML shows a vot-
ing model requiring that at least 4 replicas respond. Not
all elements are shown. Where etc. is shown a list of fur-
ther elements akin to those above would be present. The
¡xpath¿ elements show how we extract the data to be voted
upon from the SOAP message. Each value voted upon can
also have the required majority and a tolerance specified.
As can be seen the model is relatively simple, consisting of
a voting procedure connected to N proxy procedures. It is
these proxy procedures that are responsible for passing the
message to external services.

3.5. Listeners

Figure 2 shows the container receiving a message from
an arbitrary client, passing that message through a policy
model containing message handling procedures. In order
for a message to be passed through it must be wrapped in



Figure 3. Ephemeris Voting Policy Model

a context. The job of wrapping a message is done by a
Listener object, an instantiation of a EndpointListener sub-
class. Effectively, an EndpointListener is a Java servlet [4]
that is mapped to a given endpoint. The listener class rep-
resents the first point of contact with our architecture, from
which the policy model is invoked.

3.6. Contexts

A message context is a wrapper for any type of syn-
chronous or asynchronous message. The MessageContext
class itself is defined as abstract but is sub-classed for differ-
ent types of messages. An example of MessageContext is
the SOAPMessageContext used to wrap SOAP envelopes,
other examples include XML and Stream contexts. The
context is passed throughout a policy model from procedure
to procedure through connections. All message contexts
have an interface for creating, cloning, and storing proper-
ties. Sub-classes of MessageContext have specific methods
for dealing with specific problems associated with the type
of message. The architecture is designed to support a syn-
chronous messaging by allowing not only a request but also
a response envelope to be included in the message context.
As with the Apache Axis architecture, asynchronous mes-
saging is supported by simply ignoring the response enve-
lope [3]. Problems associated with asynchronous messag-
ing such as message correlation are not dealt with directly
by the architecture, but we endeavour to provide the build-

ing blocks upon which this class of problem can be solved.

3.7. Proxy Service Architecture

Figure 4. Class Diagram for a Proxy Service

3.8. Traversing a Proxy Service

Once a message context has been created (by the lis-
tener) the policy model is invoked. The only information
the policy model receives is the message context although
this may contain property objects. A model is instantiated
as soon as it is deployed and so the message context gets
passed directly to the root procedure. The root procedure is
the procedure that has an attribute in the policy model XML
that identifies to be the root. If no procedure is marked as
the root, the first procedure in the list is deemed to be the
root. From the root procedure the context is propagated to
other procedures via connections. Within a procedure, con-
nections can be accessed either through an iterative or direct
interface. The direct interface requires forward knowledge
of what the connection will be identified as in the policy
model XML. It is always preferable to use the iterative in-
terface of a connection set to prevent a lock-in between a
procedure and its model.

3.9. Building Policy Models

A procedure is not limited in what it can do. The pol-
icy model could be implemented in just one procedure if
required. But the architecture supports the division of pro-
cedures into the following broad classes:

1. Flow Control; these procedures implement the actual
fault tolerance pattern, a redundancy procedure for ex-
ample would split the flow into ’n’ concurrent nested
procedures.



2. Redirection; these procedures map to services housed
by the container. A message context passed to a redi-
rection procedure will have it’s contents serialized and
sent directly to a service. A redirection service may
block whilst waiting for a response.

3. Caching; these procedures will store messages, onto a
context or possibly a database.

4. Query. The final class of procedure is querying where
information can be retrieved from or placed into the
message. A query procedure is useful for manipulating
the headers of messages that might control the actions
of actors later down the processing chain. A voting
policy will use a query procedure to extrapolate the
final results of a returned message.

Certain procedures will transcend classes for example
the voting procedure is both of a flow control and query
class.However, limiting the procedures to certain tasks
serves three purposes:

1. Modularity. To ensure no part of the system is too big
or unmaintainable.

2. Allow Procedure Re-use. Figure 4 shows that Vot-
ingProcedure inherits from RedundancyProcedure al-
lowing code re-use and complex procedures to be built
upon simpler ones. Incorporating all the tasks into one
procedure would prevent inheritance from being pos-
sible.

3. Allow Profile Re-use. In this scope we define a profile
as a generic policy model that we have defined for third
parties to copy and extend. It much easier to extend an
XML model than a large encompassing procedure.

The building of policy models can be tackled in one of
two ways. Firstly by instantiating the generic profiles in-
cluded with the architecture. Effectively, we have writ-
ten several procedures encompassing several fault tolerance
models including first past the post redundancy, voting, re-
covery, and filtering. Because these procedures are not des-
ignated to any specific service, the policy model itself con-
tains most of the configuration information. For example
a voting procedure for SOAP messages will require XPath
references to the values being voted on. A second approach
is to engineer your own procedures that are either generic
or service specific. Understanding of the architecture and
inventiveness are key requirements for any potential pro-
grammer. We supply an Application Programming Inter-
face (API) and tools to support developers.

After introducing our architecture we present a set of
tools, middleware and Software Development Kits (SDKs)
that support the implementation of service containers.

4. The Architecture in Practice

4.1. Usage Scenarios

We envisage that the actor involved in adding fault toler-
ance to services or service-based applications may be one of
several people. A knowledgeable user may have discovered
that there are a number of replicated external services pro-
viding the functionality they desire. They may then make
use this fact by configuring a fault tolerant container for
these services and directing their application to that rather
than directly to the services themselves. For groups of users
making common use of services this knowledgeable user
may be an administrator, who may set up the fault tolerant
container on behalf of all of their users.

The application developer may also be the one to do this,
perhaps building calls to a remotely hosted fault tolerant
container into their application. On the other hand they may
want to build the fault tolerant container directly into their
client application to avoid extra messaging overheads and
to keep a single point of maintenance.

It may also be a third party who wishes to add fault tol-
erance to external services (perhaps to charge the client for
the added value or the service providers for the extra custom
generated).

Finally, at the opposite end of the chain to the user, the
service developer or service provider may wrap their own
services to make them more reliable or available. They may
also choose to set up the container to fall back to services
provided by somebody else if it is important to avoid down-
time.

4.2. Middleware

Rather than allowing the container to run standalone,
middleware, in the form a Java servlet engine, is required to
host the container. The justification for hosting the service
container is to separate the concerns of fault tolerance from
those of performance, security and stability in just the same
way our architecture is separated from the service function-
ality it supports. Further justification is the ease with which
the service container can be deployed (potentially dynam-
ically) to a Java servlet engine. Java servlet engines range
from the commercial such as IBM Websphere to the open
source Apache Tomcat. Since Apache Tomcat is now recog-
nised as a mature product, we have utilised it throughout our
development and testing.

We could potentially use a more specific middleware for
SOAP Services for example the Apache Axis SOAP engine.
However, we wanted the architecture to handle non SOAP
requests such as data streams. The architecture supports
SOAP messaging (through the SOAPMessageContext), but



could easily support other protocols such as Representa-
tional State Transfer (REST) [8] in this case by extending
the XMLMessageContext. Also, we did not want to tie each
proxy service to a given service interface; SOAP service en-
gines generally provide interface checking before delegat-
ing the service request to a provider. Finally using a SOAP
engine would dictate the structure of architecture affecting
our ease of use philosophy.

Web based applications are deployed to a Java servlet en-
gine in the form of a Web ARchives (WARs). A WAR can
be copied to a launching directory where it will be dynam-
ically deployed on the middleware, ready for client access.
According to [4]:

A Web Application is a collection of servlets,
html pages, classes, and other resources that can
be bundled and run on multiple containers from
multiple vendors.

A WAR typically consists of resources that would be visi-
ble if the middleware was hit with a web browser or other
human based client. Servlets are deployed as Java classes
that are referenced by a ”web.xml” configuration file. All
classes, jar files, and ”web.xml” are kept in a sub-folder
called WEB-INF.

One of the advantages gained from using this middle-
ware is that a web application can be dynamically updated
without restarting the container. This feature is useful in our
architecture because it allows for changing policies. The
other advantage of using Java servlet technology is that it
provides a degree of agnosticism with regards to the mes-
saging protocol. Depending upon the servlet container em-
ployed, support for different underlying request/response
protocols may also be gained. For instance Tomcat supports
HTTPS.

4.3. Software Development Kit (SDK)

To allow our architecture to be truly extensible devel-
opers can include their own code. For this purpose the
base code is abstract and can be extended using Java inher-
itance. A developer can extend the Listener, MessageCon-
text and Procedure classes. The SDK consists of these base
classes, a set of Application Programmers Interface (API)
documents created by JavaDoc, and an architecture guide.
The result of the development should be a set of jar files
containing the extended classes. These must be deployed
with a set of configuration files into a WAR file for deploy-
ment onto the middleware. The configuration files contain
the policy model written in XML.

4.4. Deployment Tool

So far we have discussed the implementation of user-
specific code and the requirement for these resources to be

deployed to the middleware. The step of creating a WAR
file containing enough information to function as a service
container is sufficiently complex to require a tool. We have
developed such a graphical tool to aid in building and con-
figuring a fault tolerant service container. The tool repre-
sents a bridge between the code development and container
deployment.

A user of the tool begins by creating a project. A
project consists of a collection of jars developed by the
user, and series of endpoint representations. The jars must
contain the listener and procedure classes developed in ac-
cordance with the SDK. Each endpoint represents a proxy
service to be deployed into the service container. The
name of the endpoint, in addition to that of the project, is
used to create its eventual url reference. For example a
ephemeris endpoint in an ephemeris project could render
the url http://somehost.com:8080/ephemeris/ephemeris.

Each endpoint maps to precisely one Listener and one
policy model. The listener is selected from a list of candi-
dates within the imported jar files. A policy model is cho-
sen using a file selection dialogue. Once chosen the policy
model can be edited rendering the display in Figure 5. Pol-
icy models can also be created and edited directly from the
main menu or externally using any XML or text editor.

Figure 5. Ephemeris Model in Deployment
Tool

Every policy model is displayed as a directed graph and
can be edited graphically by clicking on nodes or edges.
Each node represents a map to a procedure and each edge a
connection between procedures. Upon selection of a node,
it can be edited by right-clicking, requiring a name, a imple-
menting Java class, and a nest of embedded XML. A list of
available procedure classes are displayed, again these come



from the imported jar files within the project. The name will
be reflected in the graph representation. One and only one
procedure is chosen as the root. It is to this procedure that
the message will be delivered. It is then the responsibility of
the root procedure to distribute the message. In our example
the root procedure is of the Voting Procedure type.

Every single procedure will require different XML to be
nested. There are no limits placed on what that XML is, pro-
vided it is well-formed. No requirements have been lodged
for XML schemas or document type descriptors (DTDs)
by the tool or architecture. When developing a procedure,
the XML required must be known as each procedure must
parse its own nested set of XML. The abstract procedure
class knows only how to deal with procedure and connec-
tion XML tags. An example of embedded XML is the vot-
ing rules in our ephemeris voting example.

The policy model editor, consisting of the two front win-
dows in Figure 5, saves the policy model in XML format,
embedding custom XML in the appropriate procedure tag.
Models will vary in complexity, but Figure 5 shows the
model can remain simple whilst providing complex func-
tionality. There is an obvious tradeoff between the com-
plexity of the procedures and the model within which they
reside.

Final deployment is invoked by the main menu. This cre-
ates a war file described earlier and places it wherever the
user dictates. Creation of the war file requires the copying
of jars and XML model files, the generation of a web appli-
cation deployment file, and finally an archiving process to
create the war. If the war is located correctly, in this case the
webapps directory of tomcat server, the service container
will be deployed dynamically and immediately ready for
use. To use, the client must point at one of the endpoints
mapping to each proxy service.

5. Assessment and Evaluation

We have successfully demonstrated the use of this ar-
chitecture using the ephemeris voting example including a
visualisation of the vote shown in Figure 6.

What has been shown is a successful application of a
fault tolerance policy. However, this example has limita-
tions. Firstly, this approach depends upon the fact that mul-
tiple replicas of service can be found or created. This has the
obvious downside that a competitive service marketplace,
which would make finding replicas simpler, does not exist at
the moment. However, in the future is very likely to emerge
in certain domains. Our architecture anticipates such a situ-
ation. In the mean time it applies to those services which do
have multiple available implementations. Since these often
have no consistent interface one of our future directions will
be to simplify mapping service calls onto similar interfaces
(as in [10]).

Figure 6. Ephemeris Voting Example Visual-
istaion

A further apparent shortcoming of our architecture is that
many of the mechanisms we employ do not apply to state-
ful services. The policy model is stateless. All actions in-
side the proxy service occur within the scope of the message
context. In reality the service container is required to store
state beyond the scope of a single message and indeed al-
low for different proxy services to interact. However, the
mechanisms we employ are in no way limited to those that
are already implemented. Also, the fact that web services
are inherently stateless, as well as the fact that those which
hold state will do so using a database system with its own
transaction management system, means that this is not an
immediate problem. Our existing mechanisms can still be
applied to many services.

In section 3 we made a reference to the fact that our ar-
chitecture introduces an extra level of indirection. Whilst
this is a common solution to software engineering problems
it carries with it problems of its own. For instance, if the
intermediate layer fails then it is often hard to track down
the problem. In our architecture, if the redirected endpoint
is hard-coded - but the Service Container itself no longer
exists, or has failed for some reason, then the service call
fails. To address this potential problem we propose a ‘fault
tolerance SOAP header’. An Endpoint Service can then be
viewed as what is referred to as a SOAP intermediary in
the SOAP specification [6]. By stipulating that the SOAP
header must have the attribute mustUnderstand set to false,
SOAP calls may pass to the original intended endpoint in
the case of failure. Otherwise they may be routed via the
Endpoint Service. Thus, provided it is made simple to add
this header to calls when developing a client application (via



an API) then transparent fall back to a straightforward ser-
vice call is possible. Also, the client would no longer need
to know the endpoint address for the container. Instead, a
layer-7 routing component, would deal with mapping ser-
vice calls to an appropriate fault tolerant container. Al-
though this would be transparent to the client, somebody
would still need to have set these mappings up in some
form, even if this was just a case of publishing the redi-
rected endpoints in some registry.

The added disadvantage of this approach would be that
legacy client applications could not easily make use of the
necessary SOAP header. A separate wrapper would have
to be provided to support such applications without reim-
plementation. For new applications the headers could be
added by using an API when implementing the client. The
primary reason to introduce the header would simply be to
mark the message for routing to a fault tolerant container as
discussed above. However, it could potentially also contain
a policy to be used to dynamically configure a container.

The one area in which fault tolerant service containers
should be used with caution is in high performance applica-
tions. Some overhead is obviously introduced by the con-
tainer itself. This is negligible in most situations, but may
become significant if many contained services are com-
posed together.

6. Conclusion

The architecture we have described in this paper is still
in its youth. However it addresses an important problem for
service-based systems: that of ensuring availability and re-
liability of services. As shown by the Ephemeris Service
scenario, this can be achieved at low cost, both financially
and in terms of development effort. In summary the addi-
tional effort involved creating a fault tolerance policy, which
involved drawing the graph and writing a small amount of
XML in our tool, and then building and deploying this in a
container as a war file.

In the previous section we discussed several potential
limitations of the architecture in terms of real world us-
age. We propose to build upon this architecture in the future
to address these issues. One of these improvements is the
routed access mode to our container using SOAP headers as
discussed in the previous section. Another is extending the
range of built-in policies. We currently support redundancy
(in various forms) as our central fault tolerance mechanism.
In the future we intend to implement check-pointing, and
potentially group communication for maintaining stateful
replicas (as shown to be feasible at the SOAP level in [7]).

We also intend to introduce an extended set of contexts.
Currently limited to a message context, we propose having
more contexts for trans-message and endpoint communica-
tions and synchronizations. A prime example of a require-

ment for trans-message communication is the asynchronous
transaction. The response will be generated by multiple
sources and arrive at the same endpoint. The result is sev-
eral disparate message contexts that must be coordinated to
form one response message using what ever policy is im-
plemented. A trans-message context object that is available
to each message context will allow information to be syn-
chronised. The implementation of a trans-message context
will rely upon each incoming message having a correlation
ID. Given each response is a reply to the same request an
ID is guaranteed we simply need to pull the required infor-
mation from the SOAP header then establish the context.
We intend to support context related standards such as WS-
Context and WS-Transactions.

In the current implementation the policy models are de-
ployed statically. Future plans include the dynamic deploy-
ment and adapting of models. Firstly, since policy mod-
els are represented as XML they or subsets of them can
be pushed to a proxy service in a SOAP header. The end
client can dictate what policy is used for fault tolerance
and also which services should be referenced by the ser-
vice container. Another vision for the architecture is to have
dynamically adaptable models that will change in response
to the service environment. A simple example of adapt-
ing is proxy procedures that will locate their own end ser-
vices. More complex scenarios involve changing the fault
tolerance policy in response to user requirements. Quality
of service information about end services may also dictate
what services are mapped to or overlooked.

Finally, we intend to utilise our architecture in roles be-
yond fault tolerance. An example is using the service con-
tainer for injecting faults into a system. By placing a proxy
service inline with a real service we can use the proxy to
simulate failures such as fail-stop or even byzantine. These
failures could be stochastic, probabilistic or even coordi-
nated by a cross service model. From the client perspective
the service would appear to have unstable behaviour, al-
lowing fault tolerant techniques, in possibly another service
container, to be tested. We propose that the service con-
tainer can be used for third party service monitoring. Met-
rics about contained services such as response time, avail-
ability, and reliability can be easily obtained and stored into
a database. This information can be passed to clients for
them to choose the most dependable services available. Dy-
namically adaptable proxy services can also utilise depend-
ability metrics.

7. Acknowledgements

Thanks are due to Stuart Anderson and Conrad Hughes
our partners in Edinburgh University. This work was par-
tially funded by the UK’s Engineering and Physical Re-
search Council, in conjunction with the DIRC project.



References

[1] IMCCE ephemerides server. http://www.imcce.fr/
ephemeride_eng.html.

[2] JPL HORIZONS ephemeris computation service. http:
//ssd.jpl.nasa.gov/cgi-bin/eph.

[3] AXIS architecture guide. http://ws.apache.org/
axis/java/architecture-guide.html, 2003.

[4] D. Coward and Y. Yoshida. Java servlet specifica-
tion version 2.4. http://jcp.org/aboutJava/
communityprocess/final/jsr154/index.
html, 2003.

[5] J. O. H. et al. A container-based approach to object-oriented
product lines. Journal of Object Technologies, 3(4):161–
175, 2004.

[6] M. G. et al. SOAP specification version 1.2. http://
www.w3.org/TR/soap/, 2003.

[7] X. Z. et al. Fault-tolerant grid services us-
ing primary-backup: Feasibility and performance.
http://www.cs.ucsd.edu/˜dzagorod/
research/pubs/zhang_et_al-ft_grid_serv%
ices_pb-cluster04.pdf.

[8] T. Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of Cal-
ifornia, Irvine, 2000.

[9] B. Littlewood. The impact of diversity upon common mode
failures. Reliability Engineering and System Safety, 51:101–
113, 1996.

[10] M. Ouzzani and A. Bouguettaya. Efficient access to web
services. IEEE Internet Computing, 8(2):34–44, 2004.

[11] I. Sommerville. A340 case study. http:
//www.comp.lancs.ac.uk/computing/
resources/IanS/SE7/Airbus340/inde%x.htm.

[12] N. Storey. Safety-Critical Computer Systems. Addison Wes-
ley, 1996.


